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9.5 Improve 

9.5.1 Hybrid BCI-driven FES system for upper limb rehab after stroke 
Francesco is a 41-year-old engineer from Rome. He had a hemorrhagic stroke in the right 

hemisphere involving the fronto-temporo-parietal lobes. One year after the event, he is able to 

walk with a cane, but he has severe deficits in the left upper limb (proximal movements only 

are spared, with moderate flexion spasticity). He is undergoing a BCI-based rehabilitation 

therapy in addition to standard rehabilitation (as outpatient). During the BCI session, he is 

seated in a chair with an EEG electrode cap on his head. On his left arm he has electrodes 

recording muscular activity from four muscles (extensors and flexors in the forearm, biceps 

and triceps in the arm). Also, he has a muscular stimulation device (Functional Electric 

Stimulation, FES) which provides contraction of extensor muscles in the forearm to open his 

hand. During the training session, he is asked to attempt opening his hand (auditory cues and 

a therapist nearby guiding him in the exercise); the EEG electrode cap records his brain 

activity and recognizes the intention to move (desynchronization on motor related electrodes 

on the affected hemisphere); the electrodes on his arm record muscular activity and detect 

whether his attempt to extend is generating unwanted contraction in flexor muscles (biceps 

and finger and wrist flexors); if both the EEG and the muscular activity are correct (both are 

under the therapist's supervision on a computer screen), the FES system activates to extend 

his fingers and open his hand. 

 

9.5.2 Epilepsy 
Susan is a 30 year old woman with severe frontal cortical epilepsy. Her seizures come without 

warning signs, and when she gets a seizure, she falls on the ground, often injuring her head 

and face, sometimes severely. She has tried multiple types of anti-epileptic drugs, but none of 

them has the desired effect. Using non-invasive methods, such as EEG, MEG and fMRI, it 

has been demonstrated that the source of her epilepsy extends into eloquent cortex, which 

means that surgical resection will not be possible. Her neurologist explains a third option to 

her: a small, implantable device that detects when a seizure is coming, and which is then able 

to provide a warning signal and at the same time produces a specific electrical stimulation 

sequence in an attempt to stop the epileptic discharges before they are full-blown seizures. 

Susan chooses to go for this option. During surgery, she receives two strips of four electrodes 

covering the lateral part of the left middle frontal cortex. Small wires connect the electrodes 

to a miniature sensing/stimulation device that is firmly fixed to the skull. Each time the 

neuronal activity in the area covered by the electrodes has the characteristics of a seizure 

onset, the sensing/stimulation device will produce a very small electrical pulse that Susan can 

feel as a clear tickle on her scalp at the device, warning her to sit down quickly. At the same 

time, the device will produce electrical pulses at the site of the electrodes in order to stop the 

seizure from developing further. A year after the implantation, Susan considers her quality of 

life greatly improved. Although she sometimes still has a seizure without a warning sign and 

without the neurostimulator stopping it, the number of seizures has decreased dramatically, 

and most of the time, she is able to sit down in time and thereby prevent injury. 

 

9.5.3 Cognitive stimulator 
“Why can’t I remember again in which hotel are we staying?” Jürgen’s colleague realised that 

his partner (63 years old) may need help for attention, day-to-day memory and remembering, 

after he got lost in a business trip to Paris, a well-known city for both of them. Mild cognitive 
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impairment (MCI) is the term used for this condition. For some people diagnosed with MCI, 

memory loss will be the first sign of Alzheimer’s disease. Currently, there is no cure for 

Alzheimer's. But drug and non-drug treatments may help with both cognitive and behavioral 

symptoms. 

 

There is some evidence that exercising the mind as well as the body can also help reduce the 

risk of MCI and dementia. Intellectually stimulating leisure activities such as card games or 

crossword puzzles in mid-life may allow the brain to build up a 'reserve capacity' that can 

help prevent or delay the onset of dementia. Keeping socially active may also help to reduce 

risk. To keep Jürgen’s motivation & attention alive, his GP lend him the new BCI cognitive 

stimulator, with specific and enhanced EEG methods that capture Jürgen’s attention and re-

address him again to his card-game, crossword puzzle or cognitive rehabilitation task. Jürgen 

uses the BCI stimulator at home. The device wirelessly sends gathered input data to his 

smartphone, and presents real-time visual stimuli based on self-learning and fuzzy-logic 

algorithms that often help him to remember things and tricks for his games. Now, thanks to an 

ergonomic and fashionable outlook of the BCI stimulator headband, Jürgen wears it quite 

easily while playing computer games, or even, table-games with his former colleagues. 

Though now in retirement, he will visit Paris once again for a week. Of course, all by himself. 

 

9.6 Research 

9.6.1 Research Tool for Cognitive Neurosciences 
Silvia is the head of the Institute of Cognitive Neuroscience at her university. One of their 

research areas is the investigation of “decision making and free will”. An aspect of their 

research is to question “when is a decision done”. Silvia knows that Brain Computer Interface 

technology could offer completely new possibilities to drive their work: using BCI tools one 

could decode intentions and decision making in real-time and hence also interact with the 

subject. 

Recently she got new national grant on topic “when is a decision done”. None of her staff is 

expert in BCI technology, and it would take some months to hire new staff and to let them 

develop new BCI tools. On a Neuroscience conference in the US, she met the CEO of a 

startup company (called X-BCI) offering complete BCI ecosystems. Their software platform 

is interfaced to the hardware of some of the worldwide leading BCI hardware maintainer. 

Thus, X-BCI offers a complete BCI bundle, that comes with the soft- and hardware that fits 

the customer’s demands. If a BCI paradigm could not be implemented with the standard 

toolkit, X-BCI would do the additional software adaptations and implementations. Their team 

of experienced programmers and their expertise in BCIs would guarantee fast solutions and 

full support, such that the Research team in Silvia’s institute doesn’t need any programming 

expertise. 

 

In her grant proposal Silvia explained the necessity of a complete BCI toolkit. The BCI 

system can be purchased in a bundle with additional IT service by X-BCI, with X-BCI doing 

the programming work which is necessary to setup the experiments. The reviewers of the 

proposal agreed to that proposal and the project was approved. 
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9.6.2 Medical exams 
Many medical examinations focus on the relation between stimulus presentation and 

perception, e.g. visual field test, auditory perception, and often the examined person is 

required to indicate whether (and how, where, etc.) a stimulus was perceived. A BCI could 

automate this process by modulation stimulus presentation depending on recorded brain-

signal activity. The result would be a fully automated determination of the user’s perceptual 

abilities. 

 

9.6.3 Adaptive neurofeedback BCI training application 
A number of nervous system disorders might demonstrate themselves with simultaneous 

cognitive and motor impairments (e.g., Cerebral Palsy, Amyotrophic Lateral Sclerosis). 

Besides preventing the use of conventional AT, this symptom combination also renders 

common BCI paradigms for communication and control ineffective, as end-users are 

incapable of following the paradigm-dependent training instructions compatible with the 

supervised machine learning principles conventionally employed. On the other hand, the 

possibility of learning to modulate a variety of brain signals through operant conditioning, 

neurofeedback-based approaches, where explicit instructions can be spared, has been 

demonstrated in both animal models and human individuals. Operant conditioning BCI 

training is, however, associated with extremely long training periods, while there currently 

also exists large uncertainty regarding the responsiveness of different brain correlates (i.e., 

EEG brain-rhythm spatio-spectral characteristics) to this type of training, and the extent to 

which optimal correlates are subject-specific. Enhancing BCI neurofeedback training with 

adaptivity along with suitable feedback representations could allow the gradual identification 

by the BCI of the most responsive brain activity, thus considerably reducing the required 

training time and boosting the training success rates despite the cognitive impairments. 

Successful training of the sorts described hereby (e.g., down- or up-regulation of different 

brain-rhythms) could provide a general unary, binary or even multi-functional control 

channel. The latter can be subsequently employed for the control of a variety of interfaces and 

brain-actuated devices (spellers, wheelchairs, smart-home environments). 

 

9.7 Recommendations 

9.7.1 End users 
Will be available in the first public draft of the roadmap. 

9.7.2 Research 
When asked about the bottlenecks of BCIs, respondents of our Researchers’ Questionnaire 

agreed that (long-term) system durability and (long-term) system performance are still sub-

optimal for both invasive and non-invasive systems, although for invasive systems, system 

durability seems to be a more important issue (63% vs. 51% agreed or strongly agreed), 

whereas system performance was more often selected as a bottleneck for non-invasive than 

for invasive systems (73% vs. 53%). This could be related to insufficient evidence about 

(long-term) durability (invasive 53% & non-invasive 38%) and performance (invasive 63% & 

non-invasive 48%). 

 

Non-invasive BCI systems are considered safe by a large majority (78%) of respondents, but 

also invasive applications are considered safe by 50% of the respondents (34% considered the 

risks of invasive systems to be too high). Especially for invasive BCI systems, more evidence 

should be gathered about the risk/benefit ratio for the users (63%) and the (long-term) system 
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safety for the users (47% agreed or strongly agreed, versus 28% disagreed/strongly 

disagreed). 

 

Interestingly, only a minority of researchers considers the target populations as being too 

small for commercialization of both BCI systems (invasive 0% & non-invasive 31%) and 

many respondents reported they see clear advantages of invasive (63%) and non-invasive 

(43%) BCI solutions over non-BCI solutions. In that sense, a remarkable bottleneck for both 

techniques is that potential users do not actually seem to know about the existence of both 

invasive (72%) and non-invasive (66%) BCI tools. The price of both BCI systems was 

considered by many as being too high (invasive 53% & non-invasive 45% agree or strongly 

agree) and the equipment still too complicated for home use (invasive 56% & non-invasive 

70%). Invasive and non-invasive BCI systems were considered too large (44% & 42%), 

cosmetically unappealing (53% & 51%), and to not meet the wishes and needs of end users 

(56% & 61%). 

 

Respondents suggested that both invasive and non-invasive BCI research should focus on the 

development of better hardware (84% & 90%) and software (78% & 83%) to improve system 

performance. In particular for invasive BCIs, implantable multi-channel amplifiers with a 

long battery life are considered essential for the future (84%). 

 

Respondents expressed a wish for clinical trials that should shed light on system performance 

(87% & 78%) and durability (87% & 67%). Clinical trials to establish safety seem more 

important for invasive (81%) than for non-invasive BCIs (46%). Clinical trials should also 

demonstrate the efficacy of the devices (75%) and the risk/benefit ratio for end users (78%) of 

invasive in comparison to non-invasive BCI systems. More research is needed according to 

respondents in order to identify the wishes and needs of end users (87% & 60%) that use both 

invasive and non-invasive BCI systems. 

 

9.7.3 Industry 
In line with future opportunities in the above identified synergy fields and the key BCI market 

applications specified in Table 2, BCIs applied for communication & control aim to replace 

or enhance natural CNS output. This matches the technology sector where apparel and 

accessories industry stakeholders joining the computer and telecommunication industry may 

play a fundamental role. BCIs applied for health & neurofeedback aim to replace, restore, 

enhance or improve natural CNS output by replacing lost function, modifying brain activity, 

guiding neural plasticity, increasing the efficacy of rehabilitation, or as a diagnostic tool. In 

this sense, future key BCI market applications may influence the medtech, rehabilitation, 

and robotics sectors. BCIs applied for AT and smart home control aim to replace or 

supplement natural CNS output. Most BCI synergies will be in the assistive technology and 

domotics industry, here also part of the technology sector. BCIs applied for safety & security 

aim to enhance or supplement natural CNS output. Here, the automotive and aerospace 

sector will benefit from the BCI synergies. BCIs applied for entertainment & gaming and also 

neuromarketing &  finance aim to enhance or supplement natural CNS output, clearly 

influencing  entertainment and marketing sectors.   

 

As ongoing research looks promising, the impact of BCIs on our society is expected to 

increase in the near future thanks to new, emerging opportunities in identified synergy fields. 

Expanding into new markets offers even more growth opportunities than expanding into 

related markets. The further a company departs from its current markets, the greater the 

number of opportunities. But it is also true that the further a company travels from what it 
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knows, the greater the risk. The difference between a related and an unrelated new market can 

be a matter of perspective, though. Based on the identified key BCI market applications (see 

Table 2), we intend to provide a qualitative market analysis estimating their relative market 

growth and relative market value by 2020 (see Figure 3). This is also an approach to 

qualitatively assess potential future market opportunities for SMEs and other type of industry 

stakeholders in the BCI and related emerging markets. The estimated relative market growth 

and relative market value analysis portrayed in Figure 3 is based on our evaluations, 

interpretations, and experience.  

 

 
Figure 3: Qualitative market analysis on estimated relative market growth and relative market 

value by 2020 from the identified key BCI market applications groups.   

 

The intensive competition in communication & control technologies, such as eye-tracking and 

enabling software, may slow down the growth of this conventional and most specific BCI 

field - but just relative to other new emerging applications groups.  

 

In health & neurofeedback related market applications, a general reason behind such 

enormous growth is the continuing massive need to enhance rehabilitation therapies and 

preventive practices (for example to delay cognitive impairment) in an effort to reduce overall 

healthcare costs. The increase in life expectancy in developing countries, and the rapidly 

growing elderly population (especially in Western Europe and the US) will give rise to larger 

market opportunities in related fields in the upcoming years. Age is directly associated with 

stroke and dementia incidence, with age being an uncontrollable risk factor. This 

demographic change in the 21st century demands new strategies in health care addressed to 

the elderly. This framework makes health systems policies having to face several challenges 

concerning care for the elderly and comorbidities associated with old age. In the same line, 

new BCI solutions can emerge as AT & smart home control applications, thus growing faster 

and in parallel with health & neurofeedback related applications by the year 2020. This 

assumption is based on the idea that rehabilitation does not need to be restricted to the 

hospital, but could also take place at the patient’s home. Of course, BCIs for rehabilitation 

and BCIs for AT are two different approaches. However, if end users get used to BCI devices 



   

31 

“for rehab at home”, this can open a window to use the same BCI device as a new way to 

generally access the environment. Given the right measures, BCIs can therefore be easily 

extrapolated to different purposes and applications in manifold settings. 

  

On the other hand, safety & security market applications are now a real emerging segment 

due to the increasing need to guarantee people’s security and safety in diverse environments 

(see Table 2). Entertainment & gaming applications are among the most flourishing segments 

using BCIs as common devices. Essential for its success are the availability and reduced costs 

of BCI gaming products. That is the reason why its estimated relative market value might be 

smaller in comparison to other BCI market applications. Further, entertainment & gaming 

applications may turn BCI shortcomings into challenges finding potential new end users. This 

fact may become an incentive for future industry investments that may lead to the highest 

estimated relative market growth (see Figure 3) for this application group. Likewise, but not 

yet with such a growth, neuromarketing and finance applications may be quite promising. 

BCIs may help to further explore consumer needs and even influence (IT)-finance, as a 

whole. Finally, R & D investment efforts are still required to try to answer basic science 

questions aiming to improve real-time processing methods and self-learning algorithms, to 

increase throughput rates, and to achieve higher accuracy and reliability. 

 

10 Ethical issues 
With BCI technology rapidly growing and attempting to move closer to users’ in real world 

scenarios, ethical issues related to both medical and non medical applications emerge. Some 

of those issues are shared with other technologies, while others are specific to the BCI itself. 

To approach the ethical debate, we first analyzed previous experiences and then 

contextualized them in the current BCI scenarios, highlighting relevant issues emerging from 

the use cases (UCs). 

 

The Future BNCI roadmap identified several potential ethical issues (Table 3) and drew the 

following recommendations: (1) foster cooperation between BNCI and ELSI (ethical, legal, 

and societal issues) projects, (2) new BNCI projects should be required to address ethical, 

legal, and societal issues, (3) communicate results to the public, (4) encourage citizen 

participation in BNCI projects, (5) educating PhD students on neuroethics, (6) research on 

BNCI use as an assistive technology with special attention to ELSI issues. 

 

Such recommendations address the principal ethical issues covered by the recent scientific 

literature such as unrealistic expectations in study participants, the selection of study 

participants, benefits and strains of participation, BCI illiteracy, the possibility of detrimental 

brain modifications induced by BCI use (Grübler et al., 2014), research on BCIs as assistive 

technology (Carmichael & Carmichael, 2014), and communication with social media 

(Purcell-Davis, 2013). 

 

Table 3: Ethical issues in BNCI use 

Research & Development Daily life of users Society as whole 

 Informed consent in people 

having difficulties 

communicating 

 Risk/benefit analysis 

 Shared responsibility in BCI 

teams 

 Consequences of BCI 

technology for end 

users and caregivers 

 Personal responsibility 

 Personhood 

 Risk of excessive use 

Mind reading and privacy 

Mind control 

Selective enhancement and 

social stratification 

Mental integrity 

Bodily integrity 
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 Side-effects 

 Ethics in translational research 

from animal models to humans 

 Human dignity 

 Regulating safety 

 Communication to the media 

therapeutic applications 

 

The EU BCI project TOBI (www.tobi-project.org) devoted a work package to ethical issues 

mainly focusing on benefits and risks for subjects involved in a trial (therapeutic and non-

therapeutic research). The aspect of the informed consent in BCI research was in-deep 

addressed and other issues emerging from the use of BCI technology for rehabilitation goals 

were discussed.  

 

The NERRI project (in progress, www.nerri.eu) addresses the issues of responsible research 

and innovation in the field of neuro-enhancement in order to bring the ethical debate to the 

different stakeholders.  

 

The report of the Nuffiled Council on Bioethics (www.nuffieldbioethics.org) highlights two 

main risks with respect to BCIs: surgery complications for invasive BCIs and changing brain 

structure and functioning in non-invasive BCIs since these employ a highly repetitive use of 

certain pathways. The latter document proposes an Ethical Framework articulating all the 

ethical and social concerns with regard to neurotechnologies. 

 

The analysis of UCs will allow identification of the main ethical issues concerning short and 

long term applications of BCI technology and to draw practical recommendations both for 

researchers and industries taking into account ethical, legal and societal aspects. 

 

11 Recommendations 
 

From the industry perspective, we estimated the relative market growth and relative market 

value of a set of identified key BCI market applications by 2020, which are likely to guide 

future opportunities for interfacing with industry stakeholders, target end users, potential 

competitors, collaborators, and some of their interrelations. For the final roadmap, we intend 

to develop practical guidelines and actionable recommendations plans in relation to the 

selected use cases, as a tool mainly to SMEs and policy makers, in order to support and 

promote industry innovation. 

 

Will be completed in the first public draft of the roadmap. 

 

http://www.tobi-project.org/
http://www.tobi-project.org/
http://www.tobi-project.org/
http://www.tobi-project.org/
http://www.tobi-project.org/
http://www.tobi-project.org/
http://www.tobi-project.org/
http://www.nerri.eu/
http://www.nerri.eu/
http://www.nerri.eu/
http://www.nerri.eu/
http://www.nerri.eu/
http://www.nuffieldbioethics.org/
http://www.nuffieldbioethics.org/
http://www.nuffieldbioethics.org/
http://www.nuffieldbioethics.org/
http://www.nuffieldbioethics.org/
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Appendix 
 

The following pages illustrate a first design draft for our roadmap. It is intended to provide a 

first peak into how the roadmap could look like in its final version (the first public draft in 

M12 will be based on this layout). However, please completely disregard the content of this 

layout draft on the following pages. 











 end users

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, 
sed diam nonumy eirmod tempor invidunt ut labore et do-
lore magna aliquyam erat, sed diam voluptua. At vero eos 
et accusam et justo duo dolores et ea rebum. Stet clita 
kasd gubergren, no sea takimata sanctus est Lorem ipsum 
dolor sit amet. Lorem ipsum dolor sit amet, consetetur sa-
dipscing elitr, sed diam nonumy eirmod tempor invidunt ut 
labore et dolore magna aliquyam erat, sed diam voluptua. 
At vero eos et accusam et justo duo dolores et ea rebum. 
Stet clita kasd gubergren, no sea takimata sanctus est 
Lorem ipsum dolor sit amet.



User-Centered Design
introductory chapter on UCD, other wps could have brief introduc-
tory chapters on other topics
justo duo dolores et ea rebum. SLorem ipsum dolor sit m et justo 
duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata 
sanctus est Lorem ipsum dolor sit amet. At vero eos et accusam et 
Lorem ipsum dolor sit m et justo duo dolores et ea rebum. Stet clita 
kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit 
amet. At vero eos et accusam et 

BCI Applications and Users
a brief taxonomy of BCI applications/users could be applied to all 
WPs (based on the 6 scenarios). Brain Painting At vero eos et 
accusam et justo duo dolores et ea rebum. Stet clita kasd guber-
gren, no sea takimata sanctus est Lorem ipsum dolor sit amet. At 
veroLorem ipsum dolor sit m et justo duo dolores et ea rebum. Stet 
clita kasd gubergren, no sea takimata sanctus est Lorem ipsum do-
lor sit amet. At vero eos et accusam et Lorem ipsum dolor sit m et 
justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea 
takimata sanctus est Lorem ipsum dolor sit amet. At vero eos et 
accusam et 

Critical survey of the State of the Art
Selection of sources
Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum 
dolor sit amet. At vero eos et accusam et justo duo dolores et ea 
rebum.

SoA of BCI design processes and usability evaluation
Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum 
dolor sit amet. At vero eos et accusam et justo duo dolores et ea 
rebum.

Discussion on the survey
Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum 
dolor sit amet. At vero eos et accusam et justo duo dolores et ea 
rebum.

What users want vs. what science can offer
In a similar way, other wps could state “what is there” and “what is 
needed” referring to different topics (what is needed from the BCI 
world to reach industries, what is needed from BCI to reach neuro-
science research in general)

Elicitation of stakeholders’ comments and recommendations. 
Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam 
nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam 
erat, sed diam voluptua. At vero eos et accusam et justo duo dolo-
res et ea rebum.



Summary of technological roadmap [must be done with WP2-
WP3]
Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam 
nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam 
erat, sed diam voluptua. At vero eos et accusam et justo duo dolo-
res et ea rebum.

Users of next generation BCIs
Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam 
nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam 
erat, sed diam voluptua. At vero eos et accusam et justo duo dolo-

res et ea rebum.

Recommendations: what would help fulfi lling the
users’ needs
eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gu-
bergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. 
At vero eos et accusam et justo duo dolores et ea rebum. Stet clita 
kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit 
m et justo duo dolores et ea rebum. Stet clita kasd gubergren, no 
sea takimata sanctus est Lorem ipsum dolor sit amet. At vero eos et 
accusam et eos et accusam et justo duo dolores et ea rebum. 

Stet clita kasd gubergren, no sea takimata sanctus est Lorem • 
ipsum dolor sit m et justo duo dolores et ea rebum. Stet clita 
kasd gubergren, no sea takimata sanctus est Lorem ipsum eos 
et accusam et justo
duo dolores et ea rebum. Stet clita kasd gubergren, no sea taki-• 
mata sanctus est Lorem ipsum dolor sit m et justo duo dolores 
et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus 
est Lorem ipsum
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